Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves

نویسندگان

  • Andreas Savvides
  • Dimitrios Fanourakis
  • Wim van Ieperen
چکیده

Long-term effects of light quality on leaf hydraulic conductance (K(leaf)) and stomatal conductance (g(s)) were studied in cucumber, and their joint impact on leaf photosynthesis in response to osmotic-induced water stress was assessed. Plants were grown under low intensity monochromatic red (R, 640 nm), blue (B, 420 nm) or combined red and blue (R:B, 70:30) light. K(leaf) and g(s) were much lower in leaves that developed without blue light. Differences in g(s) were caused by differences in stomatal aperture and stomatal density, of which the latter was largely due to differences in epidermal cell size and hardly due to stomatal development. Net photosynthesis (A(N)) was lowest in R-, intermediate in B-, and highest in RB- grown leaves. The low A(N) in R-grown leaves correlated with a low leaf internal CO(2) concentration and reduced PSII operating efficiency. In response to osmotic stress, all leaves showed similar degrees of stomatal closure, but the reduction in A(N) was larger in R- than in B- and RB-grown leaves. This was probably due to damage of the photosynthetic apparatus, which only occurred in R-grown leaves. The present study shows the co-ordination of K(leaf) and g(s) across different light qualities, while the presence of blue in the light spectrum seems to drive both K(leaf) and g(s) towards high, sun-type leaf values, as was previously reported for maximal photosynthetic capacity and leaf morphology. The present results suggest the involvement of blue light receptors in the usually harmonized development of leaf characteristics related to water relations and photosynthesis under different light environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sites of Evaporation within Leaves1[OPEN]

The sites of evaporation within leaves are unknown, but they have drawn attention for decades due to their perceived implications for many factors, including patterns of leaf isotopic enrichment, the maintenance of mesophyll water status, stomatal regulation, and the interpretation of measured stomatal and leaf hydraulic conductances. We used a spatially explicit model of coupled water and heat...

متن کامل

The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species

The hydraulic conductance of the leaf lamina ( K lamina ) substantially constrains whole-plant water transport, but little is known of its association with leaf structure and function. K lamina was measured for sun and shade leaves of six woody temperate species growing in moist soil, and tested for correlation with the prevailing leaf irradiance, and with 22 other leaf traits. K lamina varied ...

متن کامل

Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees.

The leaf hydraulic conductance (K(leaf)) is a major determinant of plant water transport capacity. Here, we measured K(leaf), and its basis in the resistances of leaf components, for fully illuminated leaves of five tree species that regenerate in deep shade, and five that regenerate in gaps or clearings, in Panamanian lowland tropical rainforest. We also determined coordination with stomatal c...

متن کامل

Differential leaf expansion can enable hydraulic acclimation to sun and shade.

Although leaf size is one of the most responsive plant traits to environmental change, the functional benefits of large versus small leaves remain unclear. We hypothesized that modification of leaf size within species resulting from differences in irradiance can allow leaves to acclimate to different photosynthetic or evaporative conditions while maintaining an efficient balance between hydraul...

متن کامل

Long-Term Effects of Red- and Blue-Light Emitting Diodes on Leaf Anatomy and Photosynthetic Efficiency of Three Ornamental Pot Plants

Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (Kleaf), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2012